

Blendanalyse

PV-Kraftwerk Schwarzach Freilandanlage

Auftraggeber:

ENVALUE GmbHGewerbepark Garham 6
D-94544 Hofkirchen

Ilmenau, 07.07.2022

Version Nr.: 1.0

Gutachtennummer: BAL-K124-22035-V10

Auftragnehmer:

Ingenieurbüro JERA Heydaer Straße 5 98693 Ilmenau OT Bücheloh

Markt Hengersberg

Christian Mays

Dipl.-Ing. Eva Jenennchen (Bearbeiter und Teamleitung)

E. Jenewachen

Inhaltsverzeichnis

		Seite
Inhal	Itsverzeichnis	1
1.	Beauftragung	2
2.	Grundlagen	3
a.	Begriffsbestimmung Blendung	3
b.	Physikalische Grundlagen	4
C.	Berechnung der Lichttechnik	
d.	Mathematische Berechnungsmethode der astronomischen Blendzeiten	7
e.	Reflektionsverhalten von PV-Modulen	9
3.	Rahmenbedingungen am Standort	10
4.	mögliche Immissionsobjekte	
5.	Situation am Anlagenstandort	12
a.	Bewertung der Immissionsorte	13
b.	Berechnung der Lichttechnik	14
6.	Fazit	17
7.	Gewährleistung	17
В.	Tabellenverzeichnis	
9.	Abbildungsverzeichnis	10

1. Beauftragung

Abbildung 1: Satellitenbild mit Kennzeichnung der geplanten PV-Fläche

[Quelle: GoogleEarth]

Auftraggeber:	ENVALUE GmbH	a **	
	Gewerbepark Garham 6 D-94544 Hofkirchen		
Auftragsdatum:	14.06.2022		
Anlagentyp:	Freilandanlage		
Standort:	Schwarzach (48°47' nördliche Breite; 13°03' östliche Länge;315 m ü. NN		

Tabelle 1: Beauftragung

Dem Auftragnehmer standen die erforderlichen Unterlagen in Form des Modulbelegungsplanes vom geplanten Standort zur Verfügung.

Zur Beurteilung der Blendwirkung als Immission bezieht sich dieses Gutachten auf die LAI (Hinweise zur Messung, Beurteilung und Minderung von Lichtimmissionen, vom 13.09.2012).

2. Grundlagen

a. Begriffsbestimmung Blendung

Bei der Blendung durch Lichtquellen wird zwischen der physiologischen und psychologischen Blendung unterschieden. Während die physiologische Blendung, die die Minderung des Sehvermögens durch Streulicht im Glaskörper des Auges beschreibt, bei den üblichen Immissionssituationen nicht auftritt, werden die Anwohner häufig durch die psychologische Blendung belästigt. Das ist selbst dann so, wenn sich die Lichtquelle in größerer Entfernung befindet, so dass sie im Wohnbereich keine nennenswerte Aufhellung erzeugt. Die Belästigung entsteht durch die ständige und ungewollte Ablenkung der Blickrichtung zur Lichtquelle hin, die bei einem großen Unterschied der Leuchtdichte der Lichtquelle zur Umgebungsleuchtdichte die ständige Adaptation des Auges auslöst [Quelle: Lichtleitlinie des Landes Brandenburg vom 16.April 2014].

Im Zuge eines Blendgutachtens muss daher zwischen der physiologischen und der psychologischen Blendung unterschieden werden. Die physiologische Blendung wird in diesem Gutachten als Beeinträchtigung eines Betrachters bezeichnet und für verkehrstechnisch relevante Immissionsorte wie Straßen oder Bahnlinien verifiziert. Diese liegt Betrachtung außerhalb des Geltungsbereiches der Lichtleitlinie. verkehrstechnisch relevante Immissionsorte nicht zu besonders schützenswerten Räumen zählen. Die Berechnungsmethode stützt sich daher auf den Bereich der physikalischen Lichttechnik und betrachtet die Absolutblendung. In der Lichttechnik wird allerdings die Physiognomie des menschlichen Auges nicht berücksichtigt, welche die Adaption des Auges an die vorherrschende Umgebungsleuchtdichte beschreibt. Hierzu findet in diesem Gutachten eine Beurteilung statt, die den Sonnenstand im Vergleich zum Emmissionsort der Reflektion betrachtet.

Die psychologische Blendung wird in diesem Gutachten als Belästigung bezeichnet und nach der Lichtleitlinie LAI (Hinweise zur Messung, Beurteilung und Minderung von Lichtimmissionen, vom 13.09.2012) berechnet.

b. Physikalische Grundlagen

Die physikalischen Grundlagen einer Blendung liegen in der Optik. Die Ursache ist die Reflektion von Strahlung an einer glatten Oberfläche. Die Oberfläche eines PV-Moduls besteht aus gehärtetem Glas, dies ist eine glatte Oberfläche welche eine Reflektion von einfallender Strahlung verursacht.

Das Reflexionsgesetz besagt, dass der Ausfallswinkel (auch Reflexionswinkel) genau so groß wie der Einfallswinkel ist, $\alpha = \beta$, und beide mit dem Lot in einer Ebene, der Einfallsebene, liegen.

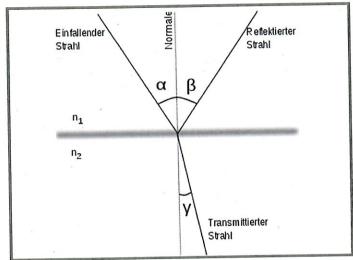


Abbildung 2: Prinzip Reflexionsgesetz

[Quelle: Tim Hellwig, Wikipedia]

Abbildung 3: schematische Darstellung - Sonne hinter Modulebene (21.05.; 05:00Uhr)[Quelle:PVSyst]

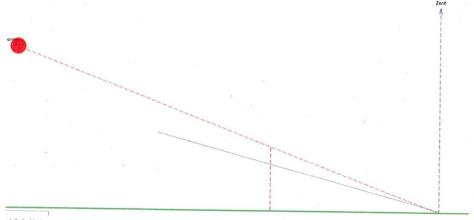


Abbildung 4: schematische Darstellung: Sonne trifft auf Moduloberfläche, ist aber in Draufsicht hinter Modul (21.06.; 05:30Uhr)[Quelle: PVSyst]

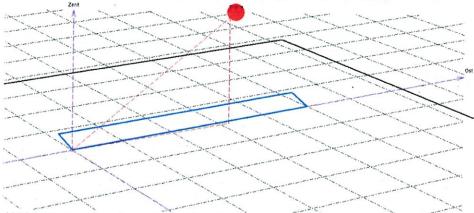


Abbildung 5: schematische Darstellung Sonne trifft von vorn auf Modul (21.06.; 08:00Uhr)[Quelle: PVSyst]

Abbildung 3 bis Abbildung 5 verdeutlicht den Sonneneinfall auf die Modulfläche. In Situationen wie Abbildung 3 ist keine Blendung möglich, da die Sonne hinter der Modulebene ist und somit die Module kein Sonnenlicht reflektieren können. Abbildung 5 zeigt die Situation, in der die Sonne von vorn auf das Modul scheint – der Einfallswinkel auf das Modul ist dann so groß, dass Reflektionen nur in sehr großer Höhe auf einen Betrachter fallen können. (Beispiel: am 21.12. zur Mittagszeit müsste ein Betrachter 5m nördlich eines Module aus 5 m Höhe auf das Modul schauen, um das Spiegelbild der Sonne zu sehen). Im Regelfall kommt es bei Sonnenstandsituationen wie in Abbildung 4 zur Blendung beim Betrachter, also bei Sonnenazimut < -90° und >90°. Diese Situationen treten vom 20.März bis 23.Semptember ein (vgl. Abbildung 7: Sonnenlaufbahn am Anlagenstandort).

c. Berechnung der Lichttechnik

Anwendungsbereich bei verkehrstechnisch relevanten Immissionsorten. Eine Berechnung der resultierenden Leuchtdichte des Solarmoduls auf einen Betrachter ist wie folgt möglich:

Leuchtdichte der Sonne – zwischen Sonne am Horizont und Mittagssonne

$$6 \times 10^6 \left[\frac{cd}{m^2} \right] < L_S < 1.5 \times 10^9 \left[\frac{cd}{m^2} \right]$$

Minimaler Abstand Modul zu Betrachter bei möglicher Blendung

Üblicher Weise wird ein Sonnenhöchststand zwischen 60° und 63° erreicht. Eine Reflexion auf einen Betrachter ist je nach Ausrichtung des Solarmoduls und Lage zum Betrachter meist bis maximal 25° Sonnenhöhe möglich. Somit wird die max. Leuchtdichte der Sonne zum Zeitpunkt der Blendung auf den Mittelwert zwischen Leuchtdichte der Sonne am Horizont und der Mittagssonne gesetzt (für abweichende Ausgangssituationen wird dieser Wert entsprechend angepasst) und resultiert zu:

$$L_S = 7.5 \times 10^8 [\frac{cd}{m^2}]$$

Nach Abbildung 6: Reflexion von Solarmodulen in Abhängigkeit vom Einfallswinkel solarer Einstrahlung / [Quelle: Deutsche Flugsicherung (DFS): Aeronautical Information Publication - Luftfahrthandbuch AIP VFR] resultiert für die Oberfläche des Solarmoduls eine Reflexionsrate von 7 %. Die abstrahlende Lichtstärke des Moduls folgt dann zu:

$$I_M = 52.5 \times 10^6 [cd] < 5.3 \times 10^7 [cd]$$

Durch die Antireflexbeschichtung des Moduls tritt keine optimal spiegelnde Reflexion auf, sondern eine diffuse. Diese diffuse Reflexion wird auch Lambertreflexion genannt. Die Blendquelle erscheint also als Lambertstrahler. Aus dieser Annahme folgt:

Die Leuchtdichte des Moduls beim Betrachter am minimal entfernten Punkt von Betrachter zu Modul folgt zu:

$$L_B = \frac{I_M}{A} = \frac{I_M}{2\pi r^2} = \frac{5.3 \times 10^7}{6.3 \times r^2} \left[\frac{cd}{m^2} \right]$$

wobei A die Fläche der Halbkugel aufgespannt bei r (minimale Entfernung des Betrachters) ist.

Bereich der vorherrschenden Umgebungsleuchtdichte = $10^2 < L_U < 10^3$

Absolutblendung = $L_A \cong 1.0 \times 10^5 \left[\frac{cd}{m^2} \right]$

d. Mathematische Berechnungsmethode der astronomischen Blendzeiten

Anwendungsbereich bei psychologischer Blendung

Gegebene Größen zur Bestimmung der kritischen Sonnenhöhe (γ_S) und des kritischen Sonnenazimutes (α_S), bei denen durch direkte Spiegelung Reflektionen am PV-Generator auftreten können.

$$\alpha \sim Az$$
imutwinkel PV — Modul $\beta \sim Neigungswinkel PV — Modul $\vec{b} \sim Ortsvektor Beobachter$ $\vec{p} \sim Ortsvektor PV — Element$$

Berechnungsmethode:

Bestimmen des Normalenvektors PV

$$\overrightarrow{n} = -\sin\beta * \sin\alpha$$

$$\overrightarrow{n} = -\sin\beta * \cos\alpha$$

$$\cos\beta$$

Bestimmen des Richtungsvektors vom Beobachter zur PVA, wobei der Koordinatenursprung auf den Beobachter gesetzt wird.

$$\vec{r} = \vec{p} - \vec{b}$$

$$\vec{d} = -(\vec{n} * \vec{r}) * \vec{n}$$

Abstand des Beobachters zur PVA

$$d = \vec{n} * \vec{d}$$

Wenn d < 0 – Sonne auf Rückseite PV-Modul – keine Spiegelung

$$\begin{aligned} \overrightarrow{r'} &= \overrightarrow{r} + 2 * \overrightarrow{d} \\ \gamma_S &= \Delta \gamma_S + arcsin \frac{r'_z}{\|r'\|} \\ \alpha_S &= \Delta \alpha_S - arctan \frac{-r'_x}{r'_y} \end{aligned}$$

Wobei nach LAI $\Delta \gamma_S = 0$ und $\Delta \alpha_S = 0$

Des Weiteren wird der Winkel zwischen dem Sonnenstand und dem Spiegelbild vom Beobachter aus gesehen ermittelt.

$$\kappa = \cos^{-1}\frac{\vec{r} * \vec{r'}}{r * r'}$$

Nach LAI wird eine reflektierte Lichtquelle erst bei einem Winkel > 10° als eigene Lichtquelle vom Menschen wahrgenommen.

Nach DIN 5034-2 lässt sich der Sonnenstand abhängig von Uhrzeit und Datum berechnen.

 $\phi{\sim}geogr.~Breite$ $\lambda{\sim}geographische~Länge$ $\omega=(12h-WOZ)*rac{15^{\circ}}{h} \sim Stundenwinkel$ $WOZ=MOZ+Zgl{\sim}wahre~Ortszeit$ $MOZ=LZ-Zeitzone+4*\lambda{\sim}mittlere~Ortszeit$ $Zgl(J'){\sim}Zeitgleichung$ $\delta(J'){\sim}Sonnendeklination$

$$\gamma_S = \arcsin(\cos\omega * \cos\varphi * \cos\delta + \sin\varphi * (\delta))$$

$$\begin{split} \alpha_S &= 180^\circ - \arccos\frac{\sin\gamma_S*\sin\varphi - \sin\delta}{\cos\gamma_S*\cos\varphi} \text{ , für } WOZ \leq 12:00 \ Uhr \\ \alpha_S &= 180^\circ - \arccos\frac{\sin\gamma_S*\sin\varphi - \sin\delta}{\cos\gamma_S*\cos\varphi} \text{ , für } WOZ > 12:00 \ Uhr \end{split}$$

e. Reflektionsverhalten von PV-Modulen

Eine Blendung wird an einer reflektierenden Oberfläche verursacht. Die Module sind nach aktuellem Stand der Technik mit reflexionsarmen Solar-Sicherheitsglas ausgestattet (eine Abweichung der Moduloberfläche wird explizit ausgewiesen)

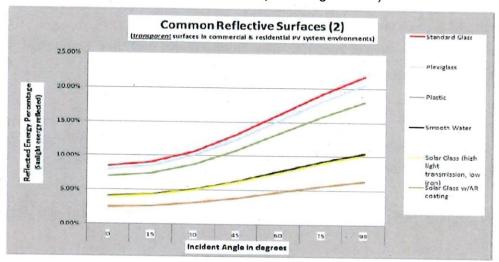



Abbildung 6: Reflexion von Solarmodulen in Abhängigkeit vom Einfallswinkel solarer Einstrahlung / [Quelle: Deutsche Flugsicherung (DFS): Aeronautical Information Publication - Luftfahrthandbuch AIP VFR]

Ergänzend ist darauf hinzuweisen, dass nasse PV-Oberflächen deutlich veränderte Reflexionseigenschaften aufweisen. Allerdings führt die Neigung der Oberfläche der Module zu einem raschen Ablaufen des Wassers, so dass nach einem Regenereignis keine erhebliche Beeinträchtigung zu erwarten ist. Die Entwicklung bei Solarmodulen zielte in der Vergangenheit unter anderem auf eine weitestgehende Minimierung der Strahlungsverluste durch Reflexionen ab. Hierzu sind Solarmodule nach dem Stand der Technik (wie hier verwendete Modul) das mit Antireflexausrüstungen durch Oberflächenstrukturierungen (mikrotexturierte Oberflächen) und weitere Entspiegelungstechniken ausgestattet. Die Reflexionen werden dabei weitestgehend minimiert. Diese Konstruktion führt zu einer erheblichen Aufweitung des reflektierten Strahls. Fokussierte, gebündelte Blendstrahlen können hierdurch nicht entstehen, es kommt allenfalls zu einem flächenhaften Lichteindruck, ähnlich Gewässerflächen. [Quelle: Dr.-Ing. Frank Dröscher, Beurteilung der möglichen Blendwirkung eines Solarparks und dessen thermischen Effekte am Verkehrslandeplatz Eberswalde-Finow].

3. Rahmenbedingungen am Standort

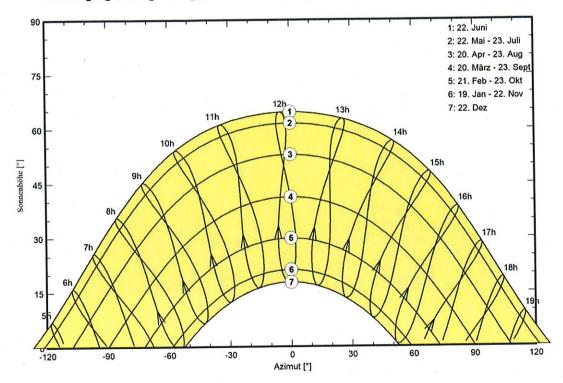


Abbildung 7: Sonnenlaufbahn am Anlagenstandort

Abbildung 7 zeigt die Sonnenlaufbahn am Anlagenstandort. Aus diesem Diagramm lässt sich der jeweilige Einfallswinkel der Sonne auf die Horizontale Ebene auslesen. Am Anlagenstandort ist demnach ein Sonnenhöchststand von ca. 65° möglich.

4. mögliche Immissionsobjekte

Zur Beurteilung des Blendverhaltens von PV-Anlagen müssen die einzelnen möglichen Immissionsorte festgestellt und ihre geographische Lage zur PVA ermittelt werden. Je kürzer die Entfernung eines Immissionsortes zur PVA ist, desto größer ist die Wahrscheinlichkeit einer möglichen Blendung.

In diesem Gutachten werden zunächst die besonders Schutzwürdigen Räume, welche der geplanten PVA am nächsten liegen, betrachtet. Sollte sich eine Belästigung durch Blendung herausstellen, werden weitere Immissionsorte in die Berechnungen mit einbezogen. Des Weiteren werden die verkehrsrelevanten Immissionsorte und ihre Lage zur PVA betrachtet.

In Tabelle 2 sind die möglichen Immissionsorte mit ihrer Entfernung zur PVA angegeben.

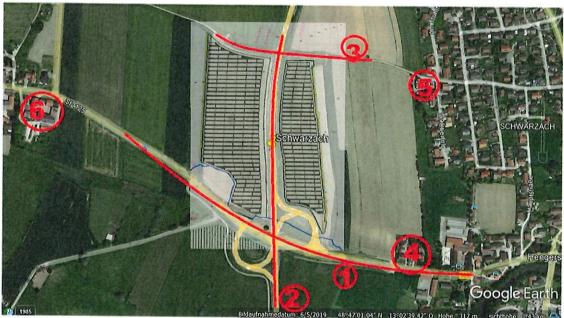


Abbildung 8: mögliche Immissionsorte [Quelle:Google Earth]

Nr.	Adresse / Ort	Entfernung zur PVA in m
1	Westlich: St2125/	35
	Östlich: B533	
2	B533	20
3	Straße nördlich	17
4	Hauptstraße 14	200
5	Im Oberfeld 2	230
6	Unterellenbach 1	340

Tabelle 2: Immissionsorte und ihre Entfernung zur PVA

5. Situation am Anlagenstandort

Abbildung 9: Geländestruktur Blick nach Süd – östlich St2125: Erdwall zur St2125 [Quelle: vom Kunden]

Zur Beurteilung und Berechnung der Blendung müssen die topographischen Eigenschaften am Anlagenstandort mit berücksichtigt werden. Wie in Abbildung 9 ersichtlich weißt das Gelände Höhenunterschiede auf.

Abbildung 10: Blick nach Süd-Süd-West auf B533 [Quelle: vom Kunden]

a. Bewertung der Immissionsorte

Bei einer Modulneigung von 18° und Südausrichtung beträgt der maximale Winkelunterschied in der Draufsicht von der PVA zum Betrachter ±23°, bei größeren Winkeln wird ein Teil des Himmels Reflektiert, an dem die Sonne nie sichtbar ist.

Auf Grund dessen können sich die Entfernungen in Blendrichtung zur PVA erheblich vergrößern. Weiterhin muss eine Sichtverbindung vom Immissionsort zur PVA vorhanden sein, um vom reflektierten Sonnenlicht geblendet zu werden.

Laut LAI (Hinweise zur Messung, Beurteilung und Minderung von Lichtimmissionen) Anhang 2 [vom 03.11.2015] Punkt 3 (Maßgebliche Immissionsorte und –situationen) befindet sich kein schutzwürdiger Raum in räumlicher Lage zu einer von der PV-Anlage ausgehenden Blendung.

Die minimale Entfernung zu einem schutzwürdigen Raum ist mit 200 m weit größer als der laut LAI relevante Bereich von 100m.

In der LAI wird nicht genauer auf den Verkehr eingegangen, etwaige Beurteilungen zu Blickrichtungen fehlen hier. Laut Richtlinie R11-3 (Blendung durch Photovoltaikanlagen) des österreichischen Verbandes für Elektrotechnik (der LAI angelehnt) sind Blendungen nur in einem Einfallswinkel bis 30° zur Fahrtrichtung relevant.

Nr.	Adresse / Ort	Entfernung zur PVA in Blendrichtung / Bewertung
1	Westlich: St2125/	35 m,
	Östlich: B533	
2	B533	37 m, keine Sichtverbindung zur Teilanlage Ost,
		min Einfallswinkel 67°>>30° - keine Beeinträchtigung
3	Straße nördlich	35 m
4	Hauptstraße 14	200 m Entfernung weit größer als relevanter Bereich,
		keine Belästigung
5	Im Oberfeld 2	230 m Entfernung weit größer als relevanter Bereich,
		keine Belästigung
6	Unterellenbach 1	340 m Entfernung weit größer als relevanter Bereich,
		keine Belästigung

Tabelle 3: Immissionsorte und ihre Entfernung zur PVA in Blendrichtung

b. Berechnung der Lichttechnik

Verkehrstechnisch relevante Orte

Eine Berechnung der resultierenden Leuchtdichte des Solarmoduls auf einen Verkehrsteilnehmer am Anlagenstandort Schwarzach ist wie folgt möglich:

Leuchtdichte der Sonne – zwischen Sonne am Horizont und Mittagssonne

$$L_S(5^\circ) = 6 \times 10^6 [\frac{cd}{m^2}] < L_S < L_S(60^\circ) 1, 5 \times 10^9 [\frac{cd}{m^2}]$$

Minimaler Abstand Modul zu Betrachter bei möglicher Blendung

$$r = 35 [m]$$

Am Anlagenstandort wird ein Sonnenhöchststand von 65° erreicht. Somit wird die max. Leuchtdichte der Sonne zum Zeitpunkt der Blendung (höchster möglicher Sonnenazimut bei Blendung bei ca. 17°) auf ein Viertel der Leuchtdichte der Sonne zur Mittagssonne gesetzt und resultiert zu: (siehe Wikipedia Beleuchtungsstärke Sonne 60°, klarer Himmel = 90.000lx – Sonne 16°, klarer Himmel = 20.000 lx)

$$L_S = 3.3 \times 10^8 \left[\frac{cd}{m^2} \right]$$

Nach Abbildung 6 resultiert für die Oberfläche des Solarmoduls eine Reflexionsrate von 7%. Die abstrahlende Lichtstärke des Moduls folgt dann zu:

$$I_M = 23.3 \times 10^6 [cd] < 2.4 \times 10^7 [cd]$$

Durch die Antireflexbeschichtung des Moduls tritt keine optimal spiegelnde Reflexion auf, sondern eine diffuse. Diese diffuse Reflexion wird auch Lambertreflexion genannt. Die Blendquelle erscheint also als Lambertstrahler. Aus dieser Annahme folgt:

Die Leuchtdichte des Moduls beim Betrachter am minimal entfernten Punkt von Betrachter zu Modul folgt zu:

$$L_B = \frac{I_M}{A} = \frac{I_M}{2\pi r^2} = \frac{2.4 \times 10^7}{2\pi r^2} \left[\frac{cd}{m^2} \right] \cong 3.1 \times 10^3 \left[\frac{cd}{m^2} \right]$$

wobei A die Fläche der Halbkugel aufgespannt bei r (minimale Entfernung des Betrachters) ist.

Auf der B533 bzw. St2125, sowie auf der Straße nördlich der PVA liegt die Leuchtdichte durch Reflektion an der PVA leicht über dem Bereich der vorherrschenden Umgebungsleuchtdichte (zwischen $10^2 < L_U < 10^3$). Für alle Situationen liegt die Leuchtdichte weit unter dem Grenzwert der Absolutblendung L_A .

$$L_B=3,1 imes 10^3\left[rac{cd}{m^2}
ight]\ll L_A=1,0 imes 10^5\left[rac{cd}{m^2}
ight]$$

Bei einer Straße handelt es sich laut BImSch nicht um besonders schützenswerte Räume. Die Berechnung der Blendzeiten nach LAI können hierfür also nicht betrachtet werden. Die LAI geht nicht weiter auf die Beeinflussung von Blendung im Verkehr ein. Bei der Betrachtung der Störung durch Reflektion wird an dieser Stelle auf die Adaption des menschlichen Auges verwiesen, da es nur bei relativ niedrigen Sonnenständen zu Reflektionen kommt und das Auge dann durch den niedrigen Sonnenstand an diese helle Umgebung angepasst ist.

Da die Leuchtdichte an dem Immissionsort kleiner als die Leuchtdichte bei Absolutblendung ist, ist eine physiologische Blendung ausgeschlossen. Die LAI unterscheidet zwischen physiologischer und psychologischer Blendung. Die psychologische Blendung beschreibt die Belästigung der Immission durch Ablenkung. Für die psychologische Blendung gelten in besonders schutzwürdigen Räumen zeitlich begrenzte Schwellwerte. Zur Festlegung der Stärke der Beurteilung wird das Blendmaß k berechnet.

Im Falle von verkehrstechnisch relevanten Orten, die nicht als besonders Schutzwürdiger Raum zu betrachten sind, soll dieser Wert die Relation der Belästigung verdeutlichen. Das Blendmaß k_s wird vornehmlich für technische Blendquellen zu Hilfe gezogen und beschreibt die Stärke der psychologischen Blendung.

$$k = 0.1 \times \frac{L_B}{\sqrt{L_U}}$$

Im vorliegenden Fall ist das Blendmaß auf der Kreisstraße

$$k = 0.1 \times \frac{3.1 \times 10^3}{\sqrt{10^2}} = 31$$

Das Blendmaß k hat nach Gebietsart gegliederte Schwellwerte nach folgender Tabelle:

	Immissionsort (Einwirkungsort)	Immissionsrichtwert k für Blendung		
	(Gebietsart nach & BauNVO) [2]	6 h bis 20 h	20 h bis 22 h	22 h bis 6 h
1	Kurgebiete, Krankenhäuser, Pflegeanstalten (§ 3)1)	32	32	32
2	reine Wohngebiete allgemeine Wohngebiete(§ 4) besondere Wohngebiete (§ 4a) Kleinsiedlungsgebiete (§ 2) Erholungsgebiete (§ 10)	96	64	32
3	Dorfgebiete (§ 5) Mischgebiete (§ 6)	160	160	32
4	Kerngebiete (§ 7) ²⁾ Ge- werbegebiete (§ 8) In- dustriegebiete (§ 9)	-	-	160

Tabelle 4: max. Zulässiges Blendmaß nach Gebietsart

Auf der B533 bzw. St2125, sowie auf der Straße nördlich der PVA liegt das Blendmaß unter allen zulässigen Schwellwerten der psychologischen Blendung. Es ist also davon auszugehen, dass auch eine psychologische Blendung durch Ablenkung ausgeschlossen ist.

6. Fazit

Nr.	Adresse / Ort	Beurteilung zur Blendung
1	Westlich: St2125/	$L_B = 3.1 \times 10^3 \left[\frac{cd}{m^2}\right] \ll Absolutblendung$
	Östlich: B533	Blendmaß k = 31 unterschreitet alle Schwellwerte;
		Keine Blendung
2	B533	37 m, keine Sichtverbindung zur Teilanlage Ost,
	8	min Einfallswinkel 67°>>30° - keine Beeinträchtigung
	9	da außerhalb Sichtachse Fahrer
3	Straße nördlich	$L_B = 3.1 \times 10^3 \left[\frac{cd}{m^2}\right] \ll Absolutblendung$
		Blendmaß k = 31 unterschreitet alle Schwellwerte;
		Keine Blendung
4	Hauptstraße 14	200 m Entfernung weit größer als relevanter Bereich,
,		keine Belästigung
5	Im Oberfeld 2	230 m Entfernung weit größer als relevanter Bereich,
		keine Belästigung
6	Unterellenbach 1	340 m Entfernung weit größer als relevanter Bereich,
		keine Belästigung

Tabelle 5: Fazit zur Blendung der einzelnen Immissionsorte

Am vorgesehenen Anlagenstandort ist nicht mit Belästigungen auf Grund von Blendung der geplanten PVA oder Beeinträchtigung des Verkehrs zu rechnen.

7. Gewährleistung

Dieses Gutachten wurde nach bestem Wissen und Gewissen unter Verwendung der zugearbeiteten Unterlagen mit größtmöglicher Sorgfalt erstellt. Die verwendeten Hilfsmittel befinden sich auf dem aktuellen Stand der Wissenschaft und Technik. Dennoch können Irrtümer oder Abweichungen nicht gänzlich ausgeschlossen werden. Hierfür wird von uns ausdrücklich keine Haftung übernommen. Gewährleistungen jeder Art sind ausgeschlossen.

8. Tabellenverzeichnis Tabelle 1: Beauftragung	I
Tabelle 4: max. Zulässiges Blendmaß nach Gebietsart	6
9. Abbildungsverzeichnis	
Abbildung 1: Satellitenbild mit Kennzeichnung der geplanten PV-Fläche	4 5 1
Abbildung 6: Reflexion von Solarmodulen in Abhängigkeit vom Einfallswinkel solarer Einstrahlung / [Quelle: Deutsche Flugsicherung (DFS): Aeronautical Information Publication - Luftfahrthandbuch AIP VFR]	9
Abbildung 7: Sonnenlaufbahn am Anlagenstandort	1 2

